Chapter 5
Transportation Problems

- Transportation Problem
- Network Representation
- General LP Formulation
- Transportation Simplex Method:

A Special-Purpose Solution Procedure

Transportation Problem

- The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s_{i}) to n destinations (each with a demand d_{j}), when the unit shipping cost from an origin, i, to a destination, j, is $c_{i j}$.
- The network representation for a transportation problem with two sources and three destinations is given on the next slide.

Transportation, Assignment, and Transshipment Problems

- A network model is one which can be represented by a set of nodes, a set of arcs, and functions (e.g. costs, supplies, demands, etc.) associated with the arcs and/or nodes.
- Transportation, assignment, and transshipment problems of this chapter as well as the PERT/CPM problems (in another chapter) are all examples of network problems.

Transportation, Assignment, and Transshipment Problems

- Each of the three models of this chapter can be formulated as linear programs and solved by general purpose linear programming codes.
- For each of the three models, if the right-hand side of the linear programming formulations are all integers, the optimal solution will be in terms of integer values for the decision variables.
- However, there are many computer packages (including The Management Scientist) that contain separate computer codes for these models which take advantage of their network structure.

Transportation Problem

- LP Formulation

The LP formulation in terms of the amounts shipped from the origins to the destinations, $x_{i j}$, can be written as:

Example: Acme Block Co.

Acme Block Company has orders for 80 tons of concrete blocks at three suburban locations as follows: Northwood -- 25 tons, Westwood -- 45 tons, and Eastwood -- 10 tons. Acme has two plants, each of which can produce 50 tons per week.
Delivery cost per ton from each plant to each suburban location is shown on the next slide.

How should end of week shipments be made to fill the above orders?

Example: Acme Block Co.

- Partial Spreadsheet Showing Optimal Solution

	A	B	C	D	E	F	G
$\mathbf{1 0}$		X11	X12	X13	X21	X22	X23
$\mathbf{1 1}$	Dec.Var.Values	5	45	0	20	0	10
$\mathbf{1 2}$	Minimized Total Shipping Cost		2490				
$\mathbf{1 3}$							
$\mathbf{1 4}$	Constraints	LHS		RHS			
$\mathbf{1 5}$	P1.Cap.	50	$<=$	50			
$\mathbf{1 6}$	P2.Cap.	30	$<=$	50			
$\mathbf{1 7}$	N.Dem.	25	$=$	25			
$\mathbf{1 8}$	W.Dem.	45	$=$	45			
$\mathbf{1 9}$	E.Dem.	10	$=$	10			

Transportation Simplex Method

- To solve the transportation problem by its special purpose algorithm, the sum of the supplies at the origins must equal the sum of the demands at the destinations.
- If the total supply is greater than the total demand, a dummy destination is added with demand equal to the excess supply, and shipping costs from all origins are zero.
- Similarly, if total supply is less than total demand, a dummy origin is added.
- When solving a transportation problem by its special purpose algorithm, unacceptable shipping routes are given a cost of $+M$ (a large number).

Transportation Simplex Method

- The transportation problem is solved in two phases:
- Phase I -- Finding an initial feasible solution
- Phase II - Iterating to the optimal solution
- In Phase I, the Minimum-Cost Method can be used to establish an initial basic feasible solution without doing numerous iterations of the simplex method.
- In Phase II, the Stepping Stone Method, using the MODI method for evaluating the reduced costs may be used to move from the initial feasible solution to the optimal one.

Transportation Simplex Method

- Phase I - Minimum-Cost Method
- Step 1: Select the cell with the least cost. Assign to this cell the minimum of its remaining row supply or remaining column demand.
- Step 2: Decrease the row and column availabilities by this amount and remove from consideration all other cells in the row or column with zero availability/demand. (If both are simultaneously reduced to 0 , assign an allocation of 0 to any other unoccupied cell in the row or column before deleting both.) GO TO STEP 1.

Transportation Simplex Method

- Phase II - Stepping Stone Method
- Step 1: For each unoccupied cell, calculate the reduced cost by the MODI method described below.

Select the unoccupied cell with the most negative reduced cost. (For maximization problems select the unoccupied cell with the largest reduced cost.) If none, STOP.

- Step 2: For this unoccupied cell generate a stepping stone path by forming a closed loop with this cell and occupied cells by drawing connecting alternating horizontal and vertical lines between them.

Determine the minimum allocation where a subtraction is to be made along this path.

Example: Acme Block Co. (ABC)

Acme Block Company has orders for 80 tons of concrete blocks at three suburban locations as follows: Northwood -- 25 tons,
Westwood -- 45 tons, and Eastwood -- 10 tons. Acme has two plants, each of which can produce 50 tons per week.

Delivery cost per ton from each plant
to each suburban location is shown on the next slide.
How should end of week shipments be made to fill the above orders?

Transportation Simplex Method

- Phase II - Stepping Stone Method (continued)
- Step 3: Add this allocation to all cells where additions are to be made, and subtract this allocation to all cells where subtractions are to be made along the stepping stone path.
(Note: An occupied cell on the stepping stone path now becomes 0 (unoccupied). If more than one cell becomes 0 , make only one unoccupied; make the others occupied with 0's.)

GO TO STEP 1.
Example: ABC

- Delivery Cost Per Ton

Transportation Simplex Method

- MODI Method (for obtaining reduced costs)

Associate a number, u_{i}, with each row and v_{j} with each column.

- Step 1: Set $u_{1}=0$.
- Step 2: Calculate the remaining $u_{i}^{\prime} \mathrm{s}$ and v_{j}^{\prime} 's by solving the relationship $c_{i j}=u_{i}+v_{j}$ for occupied cells.
- Step 3: For unoccupied cells (i, j), the reduced cost $=$ $c_{i j}-u_{i}-v_{j}$.

Example: ABC

- Initial Transportation Tableau

Since total supply $=100$ and total demand $=80$, a dummy destination is created with demand of 20 and 0 unit costs.

Example: ABC

- Least Cost Starting Procedure
- Iteration 1: Tie for least cost (0), arbitrarily select x_{14} Allocate 20. Reduce s_{1} by 20 to 30 and delete the Dummy column.
- Iteration 2: Of the remaining cells the least cost is 24 for x_{11}. Allocate 25 . Reduce s_{1} by 25 to 5 and eliminate the Northwood column.
continued \longrightarrow

Example: ABC

- Iteration 1
- MODI Method (continued)

Calculate the reduced costs (circled numbers on the next slide) by $c_{i j}-u_{i}+v_{j}$.

Unoccupied Cell	Reduced Cost	
$(1,3)$	$40-0-32=8$	
$(2,1)$	$30-24-10=-4$	
$(2,4)$	$0-10-0=-10$	

Example: ABC

- Least Cost Starting Procedure (continued)
- Iteration 3: Of the remaining cells the least cost is 30 for x_{12}. Allocate 5. Reduce the Westwood column to 40 and eliminate the Plant 1 row.
- Iteration 4: Since there is only one row with two cells left, make the final allocations of 40 and 10 to x_{22} and x_{23}, respectively.

Example: ABC

- Iteration 1 Tableau

Example: ABC

- Iteration 1
- MODI Method

1. Set $u_{1}=0$
2. Since $u_{1}+v_{j}=c_{1 j}$ for occupied cells in row 1 , then $v_{1}=24, v_{2}=30, v_{4}=0$.
3. Since $u_{i}+v_{2}=c_{i 2}$ for occupied cells in column 2, then $u_{2}+30=40$, hence $u_{2}=10$.
4. Since $u_{2}+v_{j}=c_{2 j}$ for occupied cells in row 2 , then $10+v_{3}=42$, hence $v_{3}=32$.

Example: ABC

- Iteration 1
- Stepping Stone Method

The stepping stone path for cell $(2,4)$ is $(2,4),(1,4)$,
$(1,2),(2,2)$. The allocations in the subtraction cells are 20 and 40 , respectively. The minimum is 20 , and hence reallocate 20 along this path. Thus for the next tableau:
$x_{24}=0+20=20$ (0 is its current allocation)
$x_{14}=20-20=0$ (blank for the next tableau)
$x_{12}=5+20=25$
$x_{22}=40-20=20$
The other occupied cells remain the same.

Example: ABC

- Iteration 2
- MODI Method

The reduced costs are found by calculating the u_{i}^{\prime} s and v_{j} 's for this tableau.
1 . Set $u_{1}=0$.
2. Since $u_{1}+v_{j}=c_{i j}$ for occupied cells in row 1 , then $v_{1}=24, v_{2}=30$.
3. Since $u_{i}+v_{2}=c_{i 2}$ for occupied cells in column 2, then $u_{2}+30=40$, or $u_{2}=10$.
4. Since $u_{2}+v_{j}=c_{2 j}$ for occupied cells in row 2 , then $10+v_{3}=42$ or $v_{3}=32$; and, $10+v_{4}=0$ or $v_{4}=-10$.

Example: ABC

- Iteration 2
- Stepping Stone Method

The most negative reduced cost is $=-4$ determined by x_{21}. The stepping stone path for this cell is $(2,1),(1,1),(1,2),(2,2)$. The allocations in the subtraction cells are 25 and 20 respectively. Thus the new solution is obtained by reallocating 20 on the stepping stone path. Thus for the next tableau:
$x_{21}=0+20=20$ (0 is its current allocation)
$x_{11}=25-20=5$
$x_{12}=25+20=45$
$x_{22}=20-20=0$ (blank for the next tableau)
The other occupied cells remain the same.

Example: ABC

- Iteration 3
- MODI Method

The reduced costs are found by calculating the $u_{i}^{\prime} \mathrm{s}$ and $v_{j}^{\prime} \mathrm{s}$ for this tableau.

1. Set $u_{1}=0$
2. Since $u_{1}+v_{j}=c_{1 j}$ for occupied cells in row 1 , then $v_{1}=24$ and $v_{2}=30$.
3. Since $u_{i}+v_{1}=c_{i 1}$ for occupied cells in column 2, then $u_{2}+24=30$ or $u_{2}=6$.
4. Since $u_{2}+v_{j}=c_{2 j}$ for occupied cells in row 2 , then $6+v_{3}=42$ or $v_{3}=36$, and $6+v_{4}=0$ or $v_{4}=-6$.

Example: ABC

- Iteration 3
- MODI Method (continued)

Calculate the reduced costs (circled numbers on the next slide) by $c_{i j}-u_{i}+v_{j}$.

Unoccupied Cell	Reduced Cost
$(1,3)$	40-0-36-4
$(1,4)$	$0-0-(-6)=6$
$(2,2)$	$40-6-30=4$

